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Introduction 

• Did you ever measure a smell? Can you tell whether one 

smell is just twice strong as another? Can you measure 

the difference between one kind of smell and another? It 

is very obvious that we have very many different kinds of 

smells, all the way from the odor of violets and roses to 

asafetida. But until you can measure their likeness and 

differences, you can have no science of odor. 

• If you are ambitious to find a new science, measure a 

smell. 

    Alexander Graham Bell (1914) 
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The fascinating sense of smell 

• Olfaction is in many occasions considered as a second class sense compared with 

vision or hearing.  

• Olfaction is the most primitive sense and it shows very important similarities across 

species. 

• Olfaction is key for survival, food inspection, mate finding, etc. 

 

 

 

 

 

• Further facts; 

• Fragrance synthesis industry is a 16 billion dollars industry dominated by few firms: 

• Dragoco (D), Firmenich (CH), Givaudan-Roure(CH), Haarman and Reimer (D), International Flavor 

and Fragances (US), Quest (UK), Takasago (JP) 

• Gas Sensor industry is a 9 billion dollars industry 

• Dräger(D), Smith Detection(UK), Honeywell Analytics(US), Figaro(JP), FIS(JP) 
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What makes an odorant? 

• It has to be volatile, hydrophobic and a molecular weight 

less than 300 daltons. 

• The largest known odorant is labdane: 296 mw. 

• Volatility falls rapidly with molecular weight, however this is 

not the only point since some very strong odorants are large 

molecules (some steroids) 

 

• Humans may differentiate about 10.000 different odors  

• (Some perfumists claim that the capacity is infinite and that 

there are not two molecules that smell the same) 

 

• The catalog of odorant molecules of major fragrance 

producers exceed this number. 

Labdane is the 

heaviest known 

odorant (mw. 296) 

 Nobel Prize in Physiology or Medicine for 2004: Richard Axel and Linda B. Buck for their discoveries 

of "odorant receptors and the organization of the olfactory system“. 
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Fascinating regularities vs irregularities 

• Some different molecules have pretty similar odors 

 

 

 

 

 

• The same molecule may produce different perceptions to 

different observers   

Ethyl Citronellyl Oxalate 

Ambrettolide 

Musk 

floral, pleasant 

Sweat, unpleasant,  
Androstadienone (mw. 270) 
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Fascinating regularities vs irregularities 

• Odor perception is chiral: enantiomers produce different 

perceptions 

 

 

 

 

 

 

• Of a compilation of 277 enantiomers: only 5% smell identical, 

60% similar, and 35% different. 

 

L-carvone 
D-carvone 

Minty Caraway 

L. Turin, F Yoshii, Structure-odor relations: a modern perspective, Handbook of olfaction and gustation, 2003 
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Mapping onto perception 

• Mapping physical odor attributes onto perception is not well defined 

in olfaction 

• The smell of a molecule can not be predicted by its physicochemical structure 

• The physicochemical structure of a molecule can not be predicted by its smell  

• The link between a perceptual space (made of verbal descriptions) 

and the stimulus space (made of odorants) is very complex. 

• Perfume industry and olfactory researchers use data sets (Dravnieks’ Atlas of 

Odor Character Profiles) where chemical compounds are matched with a 

description of their elicited odors. (HexylButyrate  fruity, sweet, pineapple). 

• However, some efforts has been done in order to establish the link 

• A.M. Mamlouka et al, “Quantifying olfactory perception: mapping olfactory perception 

spaceby using multidimensional scaling and self-organizing maps”, Neurocomputing 2003 

• R. M. Khan, “Predicting Odor Pleasantness from Odorant Structure: Pleasantness as a 

Reflection of the Physical World” The Journal of Neuroscience, 2007   
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Global vs Analytical Odor assessment 

• Analytical Chemistry is dominated by following philosophy: 
• Identify and quantify all components in an odor 

• This requires powerful analytical instrumentation 

 

• Is that always necessary?? 
• Sometimes we just want to differentiate two odors: 

• Is there any difference between A and B? Quality Control 

• Sometimes we need to classify a new odor into a set of reference groups 
• What is our new fragance provider providing us?   

 

• Some others need speed: 
• Alarms, 

• On-line food quality control,… 

 

• Some odors are specially complex (in particular, natural products) 
• Coffee Aroma: 

• Facts: 

• More than 900 chemicals have identified in coffee headspace 

• Good Synthetic Coffee aromas use 20-30 components and even though they are still smell ‘synthetic’ 

• Among them not a single molecule smells as ‘coffee aroma’ 
• R.A. Buffo, C. Cardelli-Freire, Coffee Flavour: An Overview, Flavour and Fragance Journal (2004) 
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The artificial olfaction 

“… As a test of this hypothesis we 

have constructed an electronic 

nose using semiconductor 

transducers … 

… shows that discrimination in an 

olfactory system could be achieved 

without the use of highly specific 

receptors….” 

Persaud K, Dodd G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. 
NATURE, (1982 Sep 23) 299 (5881) 352-5 
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Sensors: ﻿Selectivity problem 

• There are several gas sensor technologies: 
• MOX, (Metal Oxide) 

• QMB, (Quartz Microbalance) 

• SAW, (Surface Acustic Wave) 

• ElectroChemical 

• Pellistors 

• InfraRed … 

• Based on different magnitude variation 
• Resistance / Impedance 

• Current 

• Work function 

• Capacitance 

• Mass 

• Temperature 

• Optical Absorption 

 
 There isn’t a perfect specific sensor 

 Detectors  suffer false alarms 

IRceL CH4 
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Metal OXide 

• Changes in the electrical resistance 

• Based on semiconductor materials 

Semiconductor 

Heater 

Conductor 

0.5 mm 

1 

2 

3 
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Sensor Signals 
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Sensor signals 

• Temperature modulation selectivity of MOS layers depends on 

the operating temperature 
• Isothermal control: maintain constant temperature 

• Temperature modulation: capture sensor response while changing temperature 
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[Yamazoe and Miura, 1992]  

Average conductance of TGS and FIS at various heater frequencies to: 

air (A), acetone (B), ammonia (C), IPA (D) and vinegar (E) 

[Osuna, Proceedings of the 8th Intl. Symp. On Olfaction and Electronic Nose, 2001] 



What is an e-nose 

• An e-nose is an instrument which combines 
• an array of chemical sensors with partial and overlapping specificities 

• a pattern-recognition system capable of processing the multivariate 
response across sensors 
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Signal Processing 

Sensors and hardware 

The pattern recognition cycle 

Sensor array 
Excitation 

circuitry 

+ 

- 

f1 

f2 

Dimensionality 

reduction 

Classification 

Regression 

Clustering 
Validation Preprocessing 

vvu




0R
ΔR

R. Gutierrez-Osuna, IEEE Spectrum, 1998 

Conditioning 
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Signal Conditioning 

• The electrical signals generated by sensors are often not 

adequate and must be further processed by a number of analog 

signal conditioning hardware.  

• Amplification 

• Gain to adapt the signal level 

• Filtering  

• Remove unwanted frequency components (low-pass, high-pass, band pass, 

band rejects) 

• Compensation 

• Special functions with analog circuits to compensate deficiencies: linearization, 

logarithmic amplification, temperature compensation,… 
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Signal Pre-processing 

 • The goal  prepare the data for multivariate pattern analysis. It 

is critical and can have a significant impact on the performance of 

next steps in pattern analysis.  

• Signal pre-processing is somewhat dependent on the underlying sensor 

technology, but two stages are common: 

 

• Baseline correction  Transform the sensor response relative to its 

baseline for the purposes of contrast enhancement, scaling and/or drift 

compensation 

 

• Normalization  there are many sources of systematic variation (for 

example, concentration of the analyte). Normalization attempts to remove 

such variation in order to make different measurements comparable  
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Signal Pre-processing:Baseline correction 

 

 

• Three baseline manipulation methods are commonly employed:  

• Difference  subtracts the baseline and can be used to eliminate additive 

drift from the sensor response  

• Relative  divides by the baseline, removing multiplicative drift, and 

generating a dimensionless response  

• Fractional  subtracts and divides by the baseline, generating 

dimensionless and normalized responses  this is common for MOX 

sensors 
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Signal Pre-processing: Normalization 

 • Two normalization techniques can be distinguish: 

• Local methods  operate across the sensor array for each individual 

measure in order to compensate for sample-to-sample variations caused 

by concentration or sensor drift, among others.  

• vector normalization  each measure is divided by its norm  

 

• Global methods  used to ensure that sensor magnitudes are 

comparable, preventing subsequent pattern-recognition procedures from 

being overwhelmed by sensors with arbitrarily large values.  

• sensor autoscaling   measurement are set to mean = 0 and  = 1   robust 

to outliers but can not provide tight bounds 

• sensor normalization in which the range of values for each individual 

feature is set to [0,1]  sensitive to outliers 

• Both can amplify noise(all the sensors (even those who do not contain 

information)are weighted equally) 
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From signal to features and patterns 

• Feature  is any distinctive aspect, quality or characteristic 

• Features may be symbolic (i.e., color) or numeric (i.e., height) 

• The combination of d features is represented as a d-dimensional 

vector called a feature vector 

• The d-dimensional space defined by the feature vector is called 

feature space 

• Objects are represented as points in feature space. This 

representation is called a scatter plot 
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• Pattern 

• Pattern is a composite of traits or features characteristic of an individual 

• In classification, a pattern is a pair of variables {x,w} where 

• x is a collection of observations or features (feature vector) 

• w is the concept behind the observation (label) 

• What makes a “good” feature vector? 

• The quality of a feature vector is related to its ability to discriminate 

examples  from different classes 

• Examples from the same class should have similar feature values 

• Examples from different classes have different feature values 

“Good” features “Bad” features 

Features, patterns and classifiers 

Ricardo Gutierrez-Osuna 

Texas A&M University 
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Features, patterns and classifiers 

 • More feature properties 

 

 

 

 

• Classifiers 

• The goal of a classifier is to partition feature space into class-labeled 

decision regions 

• Borders between decision regions are called decision boundaries  

 

Highly correlated features Non-linear separability Linear separability Multi-modal 

R1 

R2 

R3 

R1 

R2 

R3 

R4 

Ricardo Gutierrez-Osuna 

Texas A&M University 
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An example 

• Consider the following scenario* 
• A fish processing plan wants to automate the process of sorting incoming 

fish according to species (salmon or sea bass) 

• The automation system consists of 

• a conveyor belt for incoming products 

• two conveyor belts for sorted products  

• a pick-and-place robotic arm 

• a vision system with an overhead CCD camera 

• a computer to analyze images and control the robot arm 

 

*Adapted from Duda, Hart and Stork, Pattern Classification, 2nd Ed. 

Convey

or belt 

CCD 

camera 

Conveyor 

belt (bass) 

Conveyor 

belt 

(salmon) 

Robot 

arm 

computer 
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• Classification 

• Collect a set of examples from both species 

• Plot a distribution of lengths for both classes 

• Determine a decision boundary (threshold) that 

minimizes the classification error 

• We estimate the system’s probability of error 

and obtain a discouraging result of 40%  

• What is next? 

• Sensor 

• The camera captures an image as a new fish enters the sorting area 

• Preprocessing 

• Adjustments for average intensity levels 

• Segmentation to separate fish from background 

• Feature Extraction 

• Suppose we know that, on the average, sea bass is larger than salmon 

count 

length 

Sea bass Salmon 

Decision  

boundary 

An example 

Ricardo Gutierrez-Osuna 

Texas A&M University 
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boundary 

An example 

• Improving the performance of our PR system 

• Committed to achieve a recognition rate of 95%, we try a number of features 

• Width, Area, Position of the eyes w.r.t. mouth... 

• only to find out that these features contain no discriminatory information 

•  Finally we find a “good” feature: average intensity of the scales 

 

• We combine “length” and “average intensity 
of the scales” to improve class separability 

• We compute a linear discriminant function 
to separate the two classes, and obtain a 
classification rate of 95.7% 

Ricardo Gutierrez-Osuna 

Texas A&M University 
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An example 

• Cost Versus Classification rate 

• Is classification rate the best objective function for this problem?  

• The cost of misclassifying salmon as sea bass is that the end customer will 

occasionally find a tasty piece of salmon when he purchases sea bass 

• The cost of misclassifying sea bass as salmon is a customer upset when he 

finds a piece of sea bass purchased at the price of salmon 

• We could intuitively shift the decision boundary to minimize an alternative 

cost function 
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• Initial Feature Space Definition: 

• N: number of Sensors 

• Ts: Sampling Time 

• Ttot: Measurement time 

 

 

• The Initial Feature Space is given by the concatenation of the 

sampled signals to form a vector of dimension: N*Ttot/Ts. 

• Some typical numbers: 

• Ts: 0.01s, Ttot: 1200s, N=8  

• Dimension= 9.6·105 

0 100 200 300 400 500 600 700 0 
0.2 
0.4 
0.6 
0.8 

1 
1.2 
1.4 

Time(s) 

A
m

p
li

tu
d

e
 

The curse of dimensionality 

29 



Dimensionality reduction 

• The “curse of dimensionality” [Bellman, 1961] 

• Refers to the problems associated with multivariate data analysis as the 

dimensionality increases 

• The performance of most classifiers degrades with the addition of irrelevant 

features. 

 

• In practice, the curse of dimensionality means that 

• For a given sample size, there is a maximum number of features above which the 

performance of our classifier will degrade rather than improve 

• In most cases, the information  

 that was lost by discarding some  

 features is compensated by a  

 more accurate mapping in lower- 

 dimensional space 

 

• A dimensionality reduction step is usually needed 
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Texas A&M University 
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Dimensionality reduction 

• One option Reduce dimensionality by heuristic methods 

• by extracting a single parameter (e.g. steady-state, final or maximum 

response) from each sensor, disregarding the initial transient response. 

• However transient analysis can significantly improve the performance of 

gas sensor arrays 
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• By this way we will reduce the 

dimensionality and we will build a 

feature vector made from 

magnitudes extracted or selected 

from the signal using the expertise 

of an engineer with previous 

knowledge 

• Lets explore other non-heuristic 

alternatives 
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Dimensionality reduction 

• Two approaches to perform dim. reduction NM (M<N) 

• Feature selection: choosing a subset of all the features 
 

 

• Feature extraction: creating new features by combining existing ones 
 

 

• In either case, the goal is to find a low-dimensional representation of the data that 

preserves (most of) the information or structure in the data 

• Linear feature extraction 

• The “optimal” mapping y=f(x) is, in general, a non-linear function whose form is 

problem-dependent 

• Hence, feature extraction is commonly limited to linear projections y=Wx  
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• Two criteria can be used to find the “optimal” feature extraction mapping y=f(x)  

• Signal representation: The goal of feature extraction is to represent the samples 

accurately in a lower-dimensional space 

• Classification: The goal of feature extraction is to enhance the class-discriminatory 

information in the lower-dimensional space 

• Within the realm of linear feature extraction, two techniques are commonly 

used 

• Principal Components (PCA) 

• Based on signal representation 

• Fisher’s Linear Discriminant (LDA) 

• Based on classification 

 

 

 

 

Signal representation vs classification 

Ricardo Gutierrez-Osuna 

Texas A&M University 
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Principal Components Analysis 

• What is PCA  A method of analyzing multivariate data in order to express their 

variation in a minimum number of new uncorrelated variables (principal components). 

• PCA simply performs a coordinate rotation that aligns the transformed axes with the 

directions of maximum variance  

The concept of variance is very 

important. It is a fundamental 

assumption that the directions of 

maximum variance are directly 

related with the hidden phenomena 

we want to discover. 

BUT, there is no guarantee that the 

directions of maximum variance will 

contain good features for 

discrimination 

This example shows a projection of a three-dimensional data set into two dimensions 

• Initially, except for the elongation of the cloud, there is no apparent structure in the set of points 

• Choosing an appropriate rotation allows us to unveil the underlying structure.  

Ricardo Gutierrez-Osuna 

Texas A&M University 
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What is  ‘loadings’ and ‘scores 

• Loadings Relation between X and Principal Components (PC) 

• Scores Coordinates of X in de PC space  

• Loading plot Map of variables: how the variables relate to each other 

• Scores plot Map of the Samples: how the samples relate to each other 

 In order to avoid mathematics lets only say that the calculation of the principal components involve the calculation of 

eigenvectors and eigenvalues of the covariance matrix of X 

’ 

X 
X1: Feature #1 X2: Feature #2 … Xp: Feature #p 

object 

#1 
x1,1 x1,2 … x1,p 

… … THE DATA 

SET 

… … 

object 

#n 
xn,1 xn,2 … xn,p 

W 
PC1: w1 PC2: w2 … PCp: wp 

w1,1 w1,2 … w1,p 

… THE 

ROTATION 

… … 

wp,1 wp,2 … wp,p 
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PCA sinthetic example 

• Compute the principal components for the  

following 2-dimensional dataset 

• X = (x1,x2) = {(1,2),(3,3),(3,5),(5,4),(5,6),(6,5),(8,7),(9,8)} 

• Look at the plot to get an idea of the solution 

• Solution (by hand) 

• The covariance estimate of the data is: 

Σ𝑥 =
6,25 4,25
4,25 3,50

 

The eigenvalues are the zeros of the characteristic equation 

Σ𝑥𝑉 =  𝜆𝑉 → Σ𝑥 − 𝜆 = 0 →
6,25 − 𝜆 4.25

4.25 3.5 − 𝜆
= 0 → 𝜆1 = 9.34;   𝜆2= 0.41  

The eigenvectors are the solutions of the system 
6.25 4,25
4,25 3,5

𝑣11

𝑣12
=

𝜆1𝑣11

𝜆1𝑣12
→

𝑣11

𝑣12
=

0,81
0,59

 

6.25 4,25
4,25 3,5

𝑣21

𝑣22
=

𝜆2𝑣11

𝜆2𝑣12
→

𝑣21

𝑣22
=

−0,59
0,81
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PCA example (adapted from de PLS toolbox: Eigenvector reserach inc) 

• The following data was published in Time Magazine in January 1996 

• The data show the beer, wine and liquor consumption (liters per year), life expectancy (years) 

and heart disease rate (cases per 100,000 per year) for 10 countries 

Variables are in different 

units, so an autoscaling 

process is needed 

C7 presents a significative difference: 

the highest liquor consumption, lowest 

beer consumption, lowest life expectancy, 

and highest heart disease rate 

 

Are there more trends? 

  

Liquor  Wine Beer  

Life 

expectancy  

Heart disease 

rate  

Ltr/year  Ltr/year Ltr/year years Cases/10e5/year 

C1 2,50 63,50 40,10 78 61,10 

C2  0,90 58,00 25,10 78 94,10 

C3  1,70 46,00 65,00 78 106,40 

C4 1,20 15,70 102.1 78 173,00 

C5    1,50 12,20 100.0 77 199,70 

C6  2,00 8,90 87,80 76 176,00 

C7  3,80 2,70 17,10 69 373,60 

C8  1,00 1,70 140,00 73 283,70 

C9  2,10 1,00 55,00 79 34,70 

C10 0,80  0,20 50,40 73 36,40 

5 variables 

1
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b
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• With normalized data, 2 principal components capture more or 

less 75% of variance 

 

 

 

 

 

 
 

 

 

 Percent Variance Captured by PCA Model 

   

Principal     Eigenvalue     % Variance     % Variance 

Component         of          Captured       Captured 

 Number         Cov(X)        This  PC        Total 

---------     ----------     ----------     ---------- 

     1         2.33e+000         46.52          46.52 

     2         1.40e+000         28.05          74.57 

     3         5.87e-001         11.73          86.30 

     4         4.16e-001          8.32          94.62 

     5         2.69e-001          5.38         100.00 

PCA example 
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PCA example  Loadings 

• Relation between X and Principal Components (PC) 
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• We can get a quick idea of the relationships between samples looking to 

scores plots 

Different from the 

others 

Trend 

They are close together.  

Maybe they are similar 

-2 -1 0 1 2 3 4 
-3 

-2 

-1 

0 

1 

2 

3 

 C1 

C2 

 C3 

 C4 
 C5 

 C6. 

 C7 

 C8 

 C9 

 C10 

PC 1 (46.03%) 

P
C

 2
 (

3
2

.1
1

%
) 

Scores Plot 

PCA example  Scores plot 
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• Relationship between variables: loading plots 

• None variables are very 

similar 

• LifeEx and HeartD are 

the most significant 

variables, and one is 

opposite to the other. 

• So they are anticorrelated 

• One can expect than 

LiveEx is anticorreleted 

with HeartD  
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PCA example  Loadings plot 
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• Which variables are responsible of differences between countries? 

– Consider scores and loadings in the same graph: biplot (some normalization must be done) 

• C7 tends to have: 

– high liquor consumption,  

– low beer consumption,  

– high heart disease  

– and low life expectance 

 

• That points can be 

confirmed looking to the 

initial table 
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Typical pattern recognition results with PCA 

 • PCA results for the exploratory analysis from the four class of wine samples  
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R. Garrido-Delgado et al, Direct coupling of a gas–liquid separator to an ion mobility spectrometer for 

the classification of different white wines using chemometrics tools, Talanta 2011 

• Problem: It can be 

seen that wines are 

separeted by its 

alcohol contens 



• The objective of LDA is to perform dimensionality reduction while preserving 

as much of the class discriminatory information as possible 

• Assume a set of D-dimensional samples {x1, x2, …, xN}, N1 of which belong to class 

w1, and N2 to class w2 

• We seek to obtain a scalar y by projecting the samples x onto a line y=wTx 

• Of all possible lines we want the one that maximizes the separability of the scalars 

 

 

 

 

 

 

 

 

Linear Discriminant Analysis 

Ricardo Gutierrez-Osuna 

Texas A&M University 
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• In order to find a good projection vector, we need to define a measure of 

separation between the projections 

• We could choose the distance between the projected means 
 

 

 

• However, the distance between projected means is not a very good measure since it 

does not take into account the standard deviation within the classes 
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This axis yields 

better class 

separability 

This axis has a larger 

distance between means 

Linear Discriminant Analysis 
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Texas A&M University 
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Linear Discriminant Analysis 

• The solution proposed by Fisher is to normalize the difference between the 

means by a measure of the within-class variance 

• For each class we define the scatter, an equivalent of the variance, as 
  

• And the quantity                 is called the within-class scatter of the projected examples 

 

• The Fisher linear discriminant is defined as the linear function wTx that 

maximizes the criterion function 

 

 
 

 

• In a nutshell: we look for a projection  

 where examples from the same class  

 are projected very close to each other  

 and, at the same time, the projected  

 means are as farther apart as possible 
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LDA: Some algebra (I’m sorry) 

• To find the optimum projection for a 2 classes problem, we must 

express 𝐽(𝑤) as a function of 𝑤  

• First, we define a measure of the scatter in feature space 𝑥  

 

 
• where 𝑆𝑊 is called the within-class scatter matrix  

• The scatter of the projection 𝑦 can then be expressed as a 

function of the scatter matrix in feature space 𝑥  
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Additional Algebra: I apologize again 

• Similarly, the difference between the projected means can be expressed in 

terms of the means in the original feature space 

 

 

• The matrix 𝑆𝐵 is called the between-class scatter.  

•  We can express J(w) in terms of x and w as   
 

• To find the maximum of J(w)  derive and equate to zero finally, the 

projection vector w* which maximizes J(w) is 

 

 

• Using a similar development, LDA can be generalized to problems with 

more than 2 classes. 
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Example 

• LDA projection for the following 2D dataset 

 

 

• Solution (by hand) 

• The class statistics are 
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𝑆1 =
.8 −.4

−.4 2.64
𝑆2 =

1.84 −.4
−.4 2.64
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LDA vs PCA 

• This example illustrates the performance of PCA 

and LDA on an odor recognition problem 

• Five types of coffee beans were presented to an array of 

gas sensors  

• For each coffee type, 45 “sniffs” were performed and the 

response of the gas sensor array was processed in order 

to obtain a 60-dimensional feature vector  

• Results  

• From the 3D scatter plots it is clear that LDA outperforms 

PCA in terms of class discrimination  

• This is one example where the discriminatory information 

is not aligned with the direction of maximum variance  
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Limitations of LDA 

• LDA assumes unimodal Gaussian likelihoods 

• If the densities are significantly non-Gaussian, LDA may not preserve any 

complex structure of the data needed for classification 

 

 

 

 

 

• LDA will fail when the discriminatory information is not in the 

mean but rather in the variance of the data 

Ricardo Gutierrez-Osuna 

Texas A&M University 
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• LDA has a tendency to overfit training data 

• To illustrate this problem, we generate an artificial dataset 

• Three classes, 50 examples per class, with the exact same likelihood: a multivariate 

Gaussian with zero mean and identity covariance 

• As we arbitrarily increase the number of dimensions, classes appear to separate better, 

even though they come from the same distribution 
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Typical pattern recognition results with LDA 

1 Coke              

2 Diet-Coke         

3 Pepsi             

4 Dr.-Pepper        

5 Cherry-Coke       

6 Cherry-Pepsi      

7 Cheerwine         

8 RC-Cola           

9 Eckerd-Cola       

10 Eckerd-Dr.-Riffic 

Odor labels 

Gutierrez-Osuna, A Method for Evaluating Data-Preprocessing Techniques for Odor Classification with an Array of Gas Sensors IEEE 

TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS 1999 
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Typical pattern recognition results with 

PCA-LDA 
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Montilla-Moriles wines       

Jerez wines  

Huelva wines    

Valdepeñas wines 

R. Garrido-Delgado et al, Direct coupling of a gas–liquid separator to an ion mobility spectrometer for 

the classification of different white wines using chemometrics tools, Talanta 2011 
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Feature Subset Selection 

• Why Feature Subset Selection? 

• Feature Subset Selection is necessary in a number of situations 

• Features may be expensive to obtain 

• You evaluate a large number of features (sensors) in the test bed and select only a 

few for the final implementation 

• You may want to extract meaningful rules from your classifier 

• When you transform or project, the measurement units (length, weight, etc.) of your 

features are lost 

• Features may not be numeric 

• A typical situation in the machine learning domain 

• In addition, fewer features means fewer parameters for pattern recognition 

• Improved the generalization capabilities 

• Reduced complexity and run-time 

• Although FSS can be thought of as a special case of feature extraction (think of a 

sparse projection matrix with a few ones), in practice it is a quite different problem 

• FSS looks at dimensionality reduction from a different perspective 

• FSS has a unique set of methodologies 
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• Feature Subset Selection requires  

• A search strategy to select candidate subsets  

• An objective function to evaluate candidates 

• Search Strategy 

• Exhaustive evaluation involves        feature subsets for a 
fixed value of M, and 2N subsets if M must be optimized 
as well 

• This number of combinations is unfeasible, even for 
moderate values of M and N 

• For example, exhaustive evaluation of 10 out of 20 features 
involves 184,756 feature subsets; exhaustive evaluation of 
10 out of 20 involves more than 1013 feature subsets 

• A search strategy is needed to explore the space of all 
possible feature combinations 

• Objective Function 

• The objective function evaluates candidate subsets and 
returns a measure of their “goodness”, a feedback that 
is used by the search strategy to select new candidates 










M

N

Feature Subset Selection 

“Goodness” Feature 
subset 

PR 
algorithm 

Objective 
function 

Search 

Training data 

Final feature subset 

Complete feature set 

Search strategy and objective function 
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• FSS search strategies can be grouped in three categories 

• Sequential 

• These algorithms add or remove features sequentially, but have a tendency to become 

trapped in local minima 

• Sequential Forward Selection 

• Sequential Backward Selection 

• Sequential Floating Selection 

• Exponential 

• These algorithms evaluate a number of subsets that grows exponentially with the 

dimensionality of the search space 

• Exhaustive Search (already discussed) 

• Branch and Bound 

• Beam Search 

• Randomized 

• These algorithms incorporating randomness into their search procedure to escape local 

minima 

• Simulated Annealing 

• Genetic Algorithms 

Search strategies 

Ricardo Gutierrez-Osuna 

Texas A&M University 
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• One may be tempted to evaluate each individual 
feature separately and select those M features with the 
highest scores 

• Unfortunately, this strategy will very rarely work since it 
does not account for feature dependence 

• An example will help illustrate the poor performance of 
this naïve approach 

• The scatter plots show a 4-dimensional pattern 
recognition problem with 5 classes 

• The objective is to select the best subset of 2 features using 
the naïve sequential FSS procedure 

• A reasonable objective function will generate the 
following feature ranking: J(x1)>J(x2)J(x3)>J(x4) 

• If we were to choose features according to the individual 
scores J(xk), we would choose x1 and either x2 or x3, leaving 
classes w4 and w5 non separable 

• The optimal feature subset turns out to be {x1, x4}, because 
x4 provides the only information that x1 needs: discrimination 
between classes w4 and w5 

 

Naïve sequential feature selection 

Ricardo Gutierrez-Osuna 

Texas A&M University 
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• Sequential Forward Selection is a simple greedy search 

 

 

 

 

• Notes 

• SFS performs best when the optimal subset has a small 

number of features 

• When the search is near the empty set, a large number of states 

can be potentially evaluated 

• Towards the full set, the region examined by SFS is narrower 

since most of the features have already been selected 

• The main disadvantage of SFS is that it is unable to remove 

features that become obsolete with the addition of new features 

 

 

 

 

 

1. Start with the empty set Y={} 

2. Select the next best feature 

3. Update Yk+1=Yk+x; k=k+1 

4. Go to 2 

  xYJmaxargx k
YXx k






Empty feature set 

Full feature set 

Sequential Forward Selection (SFS) 

Ricardo Gutierrez-Osuna 

Texas A&M University 

59 



SFS example 

• Assuming the objective function J(X) below, perform a Sequential Forward 

Selection to completion 

 

 

• where xk are indicator variables that determine if the k-th feature has been selected 

(xk=1) or not (xk=0) 

• Solution 
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• Sequential Backward Selection works in the opposite manner as SFS 

 

 

 

 

 

1. Start with the full set Y=X 

2. Remove the worst feature 

3. Update Yk+1=Yk-x; k=k+1 

4. Go to 2 

  xYJmaxargx k
Yx k






Empty feature set 

Full feature set 

• Notes 

• SBS works best when the optimal feature 

subset has a large number of features, since 

SBS spends most of its time visiting large 

subsets 

• The main limitation of SBS is its inability to 

reevaluate the usefulness of a feature after it 

has been discarded 

Sequential Backward Selection (SBS) 

Ricardo Gutierrez-Osuna 

Texas A&M University 
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Seq. Floating Selection (SFFS and SFBS) 

• There are two floating methods 

• Sequential Floating Forward Selection (SFFS) starts from the empty set 
• After each forward step, SFFS performs backward steps as long as the objective function increases 

• Sequential Floating Backward Selection (SFBS) starts from the full set 
• After each backward step, SFBS performs forward steps as long as the objective function increases 

• SFFS Algorithm (SFBS is analogous) 

62 
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• The kNN classifier is a very intuitive method  

• Examples are classified based on their similarity with training data 

• For a given unlabeled example xu
D, find the k “closest” labeled examples in the 

training data set and assign xu to the class that appears most frequently within the k-

subset 

• The kNN only requires 

• An integer k 

• A set of labeled examples 

• A metric to measure “closeness” 
xu 

w3 

w1 w2 

K Nearest Neighbor classifier 

Feat 1 

F
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a
t 

2
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• We generate data for a 2-dimensional 3-class 

problem, where the class-conditional densities are 

multi-modal, and non-linearly separable 

• We used kNN with 

• k = five 

• Metric = Euclidean distance 

 

kNN in action: example 1 

Ricardo Gutierrez-Osuna 
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• We generate data for a 2-dim 3-class problem, 

where the likelihoods are unimodal, and are 

distributed in rings around a common mean  

• These classes are also non-linearly separable 

• We used kNN with 

• k = five 

• Metric = Euclidean distance 

 

kNN in action: example 2 

Ricardo Gutierrez-Osuna 
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1-NN 5-NN 20-NN 

kNN versus 1NN 

Ricardo Gutierrez-Osuna 

Texas A&M University 

66 



• Advantages 

• Analytically tractable, simple implementation 

• Uses local information, which can yield highly adaptive behavior 

• Lends itself very easily to parallel implementations 

• Disadvantages 

• Large storage requirements 

• Computationally intensive recall 

• Highly susceptible to the curse of dimensionality 

• 1NN versus kNN 

• The use of large values of k has two main advantages 

• Yields smoother decision regions 

• Provides probabilistic information: The ratio of examples for each class gives information 
about the ambiguity of the decision 

• However, too large values of k are detrimental 

• It destroys the locality of the estimation 

• In addition, it increases the computational burden 

Characteristics of the kNN classifier 

Ricardo Gutierrez-Osuna 
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The fish factory example again 

• The issue of generalization 

• The recognition rate of our linear classifier (95.7%) met the design specs, 

but we still think we can improve the performance of the system 

• We then design ultra-sophysticated nonlinear  

pattern recognition system based on  

artificial neural networks and, using all  

the database, an impressive classification  

rate of 99.9975% is obtained, with the following  

decision boundary 

 

• Satisfied with our classifier, we integrate the system and deploy it to the fish 

processing plant 

• A few days later the plant manager calls to complain that the system is 

misclassifying an average of 25% of the fish 

• What went wrong? 

Avg. scale intensity 

le
n

g
th

 

Decision  

boundary 

Sea bass Salmon 
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Validation 

• Validation techniques are motivated by two fundamental problems 

in pattern recognition: model selection and performance estimation 

• Model selection 

• Almost invariably, all pattern recognition techniques have one or more free 

parameters 

• The number of neighbors in a kNN classification rule 

• The network size, learning parameters and weights in MLPs,… 

• How do we select the “optimal” parameter(s) or model for a given 

classification problem? 

• Performance estimation 

• Once we have chosen a model, how do we estimate its performance? 

• Performance is typically measured by the TRUE ERROR RATE, the classifier’s 

error rate on the population 
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Motivation 

• If we had access to an unlimited number of examples these questions have a 

straightforward answer 

• Choose the model that provides the lowest error rate on the entire population and, 

of course, that error rate is the true error rate 

• In real applications we only have access to a finite set of examples, usually 

smaller than we wanted 

• One approach is to use the entire training data to select our classifier and estimate 

the error rate 

• This naïve approach has two fundamental problems 

• The final model will normally overfit the training data 

• This problem is more pronounced with models that have a large number of parameters 

• The error rate estimate will be overly optimistic (lower than the true error rate) 

• In fact, it is not uncommon to have 100% correct classification on training data 

• A much better approach is to split the training data into disjoint subsets: the holdout 

method 
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• Split dataset into two groups 

• Training set: used to train the classifier 

• Test set: used to estimate the error rate of the trained classifier 

 

 

 

 

 

• A typical application the holdout method is determining a stopping point in the 
determination of the model complexity. Do not add complexity to the model 
beyond this stopping point, it is useless. 

Training Set Test Set 

Total number of examples 

Model complexity 

E
rr

o
r 

Training set error 

Test set error Stopping point 
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• The holdout method has two basic drawbacks 

• In problems where we have a sparse dataset we may not be able to afford the 

“luxury” of setting aside a portion of the dataset for testing 

• Since it is a single train-and-test experiment, the holdout estimate of error rate will 

be misleading if we happen to get an “unfortunate” split 

• The limitations of the holdout can be overcome with a family of resampling 

methods at the expense of more computations 

• Cross Validation 

• Random Subsampling 

• K-Fold Cross-Validation 

• Leave-one-out Cross-Validation 

• Bootstrap 

 

The holdout method  
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Conclusions 

• Signal processing is a key for extracting useful information from 

datasets  

• Pattern recognition needs to cover specific stages: 

• preprocessing, dimensionality reduction, classification and validation 

• Dimensionality reduction 

• PCA may not find the most discriminatory axis 

• LDA may overfit the data 

• Classifiers 

• kNN is very versatile but is computationally inefficient 

• Validation 

• A fundamental subject, oftentimes overlooked 

• Acknowledgments: We wish to thank Dr. Ricardo Gutierrez-Osuna for his 

kind permission to use his training material.  
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Thank you for your attention 


